Approximate Computing on FPGAs

ACoF


Approximate Computing nutzt die Erkenntnis, dass viele Anwendungen des täglichen Lebens Ungenauigkeiten in Berechnungen zu einem gewissen Grad tolerieren, um dadurch Kosten und Leistungsverbrauch zu senken oder Performanzeigenschaften zu steigern. Dazu gehören z.B. die Gebiete Computer Vision, Maschinelles Lernen, Multimedia, Big Data und Gaming. Gerade in diesen Bereichen sind approximierte Berechnungen oft völlig ausreichend aufgrund von Einschränkungen der menschlichen Wahrnehmung, Redundanz oder Rauschen in Eingangsdaten. In diesem Projekt sollen neue Techniken für den Entwurf und die Optimierung von Funktionen approximierende Schaltnetze für FPGAs (engl. field-programmable gate arrays) untersucht werden. Diese Bausteine vereinigen die Vorteile der Geschwindigkeit von Hardware-Implementierungen mit der Programmierbarkeit von Software und werden in vielen Produkten des alltäglichen Lebens und sogar Cloud-Servern eingesetzt. Das Ziel unserer Forschung ist die Untersuchung a) neuer Methoden der approximierten Berechnung von Funktionen unter Ausnutzung FPGA-spezifischer Artefakte, insbesondere sog. DSP-Blöcke und BRAMs, b) neuer Fehlermetriken und von Berechnungsvorschriften für die Propagation von Fehlern durch Schaltnetze arithmetischer Module. Weiterhin sollen c) neue FPGA-spezifische Optimierungstechniken zur Entwurfsraumexploration und zur Synthese approximierender Schaltnetze für Schaltfunktionen mit mehreren Ausgängen erforscht sowie d) Hochsprachen zur Modellierung der Fehlerfortpflanzung sowie zur Synthese von approximierten Schaltkreisen in Verilog oder VHDL untersucht werden.

Publikationen

2024

2023

2022

2021

2020